云文档网 - 专业文章范例文档资料分享平台

数字钟时钟电路图设计

来源:网络收集 时间:2024-05-03 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

数字钟电路

目录

前言: ......................................................................................................2 1.设计目的 ...............................................................................................4 2.设计功能要求 .......................................................................................4 3.电路设计.................................................................................................4

3.1设计方案 ........................................................................................4 3.2单元电路的设计 ...........................................................................5 3.2.1 主体电路部分 ...........................................................................5 3.2.1.1 振荡电路 .............................................................................5 3.2.1.2 计数电路.............................................................................9 3.2.1.3 校时电路........................................................................... 14 3.2.1.4 译码与显示电路 ............................................................... 16 5.总结 ..................................................................................................... 25 致 谢 .................................................................................................... 26 参考文献 ................................................................................................. 27 附录 ......................................................................................................... 28

前言:

中国是世界上最早发明计时仪器的国家。有史料记载,汉武帝太初年间(纪元前104-101年)由落下闳创造了我国最早的表示天体运行的仪器——浑天仪。东汉时期(公元130年)张衡创造了水运浑天仪,为世界上最早的以水为动力的观测天象的机械计时器,是世界机械天文钟的先驱。盛唐时代,公元725年张遂(又称一行)和梁令瓒等人创制了水运浑天铜仪,它不但能演示天球和日、月的运动,而且立了两个木人,按时击鼓,按时打钟。第一个机械钟的灵魂——擒纵器用于计时器,这是中国科学家对人类计时科学的伟大贡献。它比十四世纪欧洲出现的机械钟先行了六个世纪。

第一只石英钟出现在二十世纪二十年代,从三十年代开始得到了推广,从六十年代开

第2页

始,由于应用半导体技术,成功地解决了制造日用石英钟问题,石英电子技术在计时领域得到了广泛的应用。并取代机械钟做了更精确的时间标准。早在1880年,法国人皮埃尔·居里和保罗·雅克·居里就发现了石英晶体有压电的特性,这是制造钟表“心脏”的良好材料。科学家以石英晶体制成的振荡计时器和电子钟组合制成了石英钟。经过测试,一只高精度的石英钟表,每年的误差仅为3-5秒。1942年,著名的英国格林尼治天文台也开始采用了石英钟作为计时工具。在许多场合,它还经常被列为频率的基本标准,用于日常测量与检测。大约在 1970 年前后,石英钟表开始进入市场,风靡全球。随着科学的进步,精密的电子元件不断涌现,石英钟表也开始变得小巧精致,它既是实用品,也是装饰品。它为人们的生活提供方便,更为人们的生活增添了新的色彩。 在现行情况下根据简单实用强的、走时准确进行设计。而实验证明,钟表的振荡部分采用石英晶体作为时基信号源时,走时更精确、调整更方便。钟是一种计时的器具,它的出现开拓了时间计量的新里程。提起时钟大家都很熟悉,它是给我们指明时间的一种计时器,并且我们每天都要用到它。二十世纪八十年代中国的钟表业经历了一场翻天覆地的大转折。其表现在三个方面:

(1)从生产机械表转为石英电子表;

(2)曾占据中国消费市场四十多年的大型国有企业突然被刚刚冒起的“组业”所取代,钟表生产中心转向中国南方沿海一带;

(3)中国钟表业发展从以机芯为龙头改为以手表外观件为龙头。

这场转折以迅雷不及掩耳的速度,冲击着传统的中国钟表工业。中国的钟表业从技术简单、零件少的石英钟机芯制造入手。最初石英钟机芯全靠从日本、德国进口,1989年开始完全自己生产,包括模具的制造加工。近十余年,逐渐提高机芯质量的稳定性,同时转向对手表机芯研制与开发。目前石英钟表机芯生产主要在福建省福州、广东东莞、番禺;机械钟表机芯在上海、山东等地。

现在我国的电子业发展非常快速,电子业的发展有利于钟表业的发展。在中国钟表发展史上,国产机芯研制的失败已经成为过去,“组装业”作为新兴钟表工业的起步阶段也已成为过去。一支新的充满智慧的钟表精英在成长。

我们相信在科技高速发展的今天,钟表业运用当今材料工业、电子工业和其他领域的最新技术,一定会生产出代表中国科学水平的产品。我们希望钟表业的精英们在提高制造技术水平中不断创新,培育出拥有自主知识产权的品牌。这正是中国钟表业发展的希望。

数字钟被广泛用于个人家庭,车站, 码头、办公室等公共场所,成为人们日常生活中的

第3页

必需品。由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,运用超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。

1.设计目的

设计一种多功能数字钟,该数字钟具有基本功能和扩展功能两部分。其中,基本功能部分的有准确计时,以数字形式显示时、分、秒的时间和校时功能。扩展功能部分则具有:定时控制、仿广播电台正点报时、自动报整点时数和触摸报正点的功能。数字钟的电路也是由主体电路和扩展电路两部分构成,在电路中,基本功能部分由主体电路实现,而扩展功能部电路实现。这两部分都有一个共同特点就是它们都要用到振荡电路提供的1Hz脉冲信号。在计时出现误差时电路还可以进行校时和校分,为了使电路简单所设计的电路不具备校秒的功能。并且要用数码管显示时、分、秒,各位均为两位显示,扩展部分要有相应的响应电路。分则由扩展

2.设计功能要求

基本功能:

(1)时的计时要求为“12翻1”,分和秒的计时要求为60进制 (2)准确计时,以数字形式显示时,分,秒的时间 (3)校正时间

3.电路设计

3.1设计方案

根据设计要求首先建立了一个多功能 数字钟电路系统的组成框图,框图如图1所示。

第4页

时显示器 分显示器 秒显示器 时译码器 分译码器 秒译码器 时计数器 分计数器 秒计数器 校时电路 振荡器 分频器

扩展电路

主体电路

图1

由图1可知,电路的工作原理是:多功能数字钟电路由主体电路和扩展电路两大部分组成。其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。

振荡器产生的高脉冲信号作为数字钟的振源,再经分频器输出标准秒脉冲。秒计数器计满60后向分计数器个位进位,分计数器计满60后向小时计数器个位进位并且小时计数器按照“12翻1”的规律计数。计数器的输出经译码器送显示器。计时出现误差时电路进行校时、校分、校秒。扩展电路必须在主体电路正常运行的情况下才能进行扩展功能。

3.2单元电路的设计

数字电子钟的设计方法很多种,例如,可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等。

在本次设计,电路是由许多单元电路组成的,因此首先必须对各个单元电路进行设计。

3.2.1 主体电路部分

主体电路部分的电路主要由振荡电路、计数电路、显示电路以及校时电路四大部分组成。下面将对各部分电路进行设计。

3.2.1.1 振荡电路

第5页

振荡电路由振荡器和分频器产生 1Hz时钟脉冲和扩展部分所需的频率,下面对振荡器和分频器两部分进行介绍。 (1)振荡器

数字电路中的时钟是由振荡器产生的,振荡器是数字钟的核心。振荡器的稳定度及频率的精度决定了数字钟计时的准确程度,一般来说,振荡器的频率越高,计时精度越高。它利用某种反馈方式产生时钟信号。对数字电路来说,振荡器的输出的幅度范围为0v—5v的方波信号而不是锯齿波、三角波或其他形式。典型的振荡器是弛豫振荡器,它通过一个RC网络将反相器的输出反馈回来并存在一定的工作延迟时间。基本的电路如图2所示。

1A21A27404R17404R2C 图2

在上述电路中,RI-C网络由第一个反相器驱动,具有RC特性曲线的响应信号被反馈给反相器的输入。当电容上的电压达到施密特触发器输入反相器的门限电压的时候,反相器的状态发生改变,并输出一个新的电压值。这个输出电压经过一定的延迟时间再次通过RI—C反馈回来,直到电容电压再次达到门限电压为止。

用施密特触发器输入器件(如74HC04),但是由于电容的参考电压在每个临界点都要发生变化,所以施密特触发器不是必需的。由于电容与输出相连,每次状态改变时,电容的充电电压会超过5V。从这一点来说,输出电压会改变电容的充电电压,直到电容两端的电压变为74HC04的门限电压(2.5V)为止。振荡器输出状态的改变发生在电容上的电压达到2.5V时。

弛豫振荡器对许多低成本而精度要求又不高的场所非常适合,但是并不推荐在任何有精度要求的实际应用电路采用它。

如果想要获得高的精度,就应该在振荡电路中使用石英晶体作振源。在数字钟的设计与制作中应采用石英晶体振荡器,因为石英晶体具有压电效应,是一个压电器件。当交流电压加在晶体两端,晶体先随电压变化产生对应的变化,然后机械振动又使晶体表面产生交变电荷。当晶体几何尺寸和结构一定时,它本生有一个固定的机械频率。当外加交流电压的频率等于晶体的固有频率时,晶体片的机械振动最大,晶体表面电荷量最

第6页

多,外电路的交流电流最强,于是产生振荡,因此将石英晶体按一定方位切割成片,两边傅以电极,焊上引线,再用金属或玻璃外壳封装即构成石英晶体。石英晶体的固有频率十分稳定。另外石英晶体的振动具有多谐性,除了基频振动外,还有奇次谐次泛音振动,对于石英晶体,既可利用基频振动,也可利用泛音振动。前者称为基频晶体,后者称为泛音晶体,晶片厚度与振动频率成反比,工作频率越高,要求晶片厚度越薄。将石英晶体作为高Q值谐振回路元件接入反馈电路中,就组成了晶体振荡器。在设计中所用的振荡器的电路图如图3所示。该电路能产生1MHz的方波脉冲振荡信号。

1MHZA125-25pFA121A7404274041K74040.01uF 图3

(2)分频器

分频器的作用是将由石英晶体产生的高频信号分频成基时钟脉冲信号和扩展部分所需的频率。在此电路中,分频器的功能主要有两个:一是产生标准脉冲信号;二是功能扩展电路所需的信号,如仿电台用的1KHz的高频信号和500Hz的低频信号等.在此电路中作为分频器的元件是:CD4518。

CD4518可以组成二分频电路和十分频电路。用CD4518组成二分频的电路如图4;用CD4518组成十分频的电路如图5;在本次设计中所用的分频器的电路图如图6。电路经过十分频后将晶振来的1MHz的振荡脉冲变为1Hz的脉冲信号,该信号作为计数器的计数脉冲使用。

输 Q1 Q4EN Q4 入 输 出 Cr CP 输入 输入 Cr CP 输 出

清零 第7页

图4 图5

1MHZ217AENCKCLR4518Q0Q1Q2Q3100KHZ3456217AENCKCLR4518Q0Q1Q2Q334561KHZ217AENCKCLR4518Q0Q1Q2Q3345610HZA217ENCKCLR4518Q0Q1Q2Q3345610KHZ217AENCKCLR4518Q0Q1Q2Q33456100HZ217AENCKCLR4518

Q0Q1Q2Q334561HZ图6

上升沿 H X L 下降沿 X CK 上升沿 输入 CR L L L L L L L EN H 上升沿 X 上升沿 L 下降沿 X 输出 加计数 加计数 保 持 全为L 上表:CD4518的功能表

振荡器和分频器两部分构成振荡电路,它的电路图如图7所示。

第8页

根据图7可知电路的工作原理是:石英晶体振荡器提供的频率为1MHz,CD4518组成十分频电路。并且一个 CD4518可以组成两个十分频电路即:CD4518的引脚2与引脚6组成一个十分频电路而引脚10与引脚14组成另一个十分频电路。晶振的输出接入第一块CD4518的输入引脚2,经过一次十分频,频率变为100KHz。输出引脚6接入同一块CD4518的引脚10经第二次分频,频率变为10KHz。输出引脚接人第二块CD4518的输入引脚2再经一次分频,频率变为1KHz。这样经过六次分频最后可以得到1Hz的频率。

1MHZA125-25pFA121A7404274041K74040.01uFA217ENCKCLR4518Q0Q1Q2Q33456217AENCKCLR4518Q0Q1Q2Q334561KHZ217AENCKCLR4518Q0Q1Q2Q3345610HZ100KHZA217ENCKCLR4518Q0Q1Q2Q3345610KHZ217AENCKCLR4518Q0Q1Q2Q33456100HZ217AENCKCLR4518Q0Q1Q2Q334561HZ

图7

3.2.1.2 计数电路

计数器是一种计算输入脉冲的时序逻辑网络,被计数的输入信号就是时序网络的时钟脉冲,它不仅可以计数而且还可以用来完成其他特定的逻辑功能,如测量、定时控制、数字运算等等。

数字钟的计数电路是用两个六十进制计数电路和“12翻1”计数电路实现的。数字钟的计数电路的设计可以用反馈清零法。当计数器正常计数时,反馈门不起作用,只有当进位脉冲到来时,反馈信号将计数电路清零,实现相应模的循环计数。以六十进制为例,当计数器从00,01,02,??,59计数时,反馈门不起作用,只有当第60个秒脉冲到来时,反馈信号随即将计数电路清零,实现模为60的循环计数。

下面将分别介绍60进制计数器和“12翻1”小时计数器。

第9页

(一)60进制计数器 电路如图8所示

12111274LS92_2981198QAQBQCQAQBQCQDR0(1)R0(2)R0(1)R0(2)R9(1)R9(2)CKACKB14146712367CKACKBQD74LS90_5GND+5VGND+5V1 图8

电路中,74LS92作为十位计数器,在电路中采用六进制计数;74LS90作为个位计数器在电路中采用十进制计数。当74LS90的14脚接振荡电路的输出脉冲1Hz时74LS90开始工作,它计时到10时向十位计数器74LS92进位。下面对电路中所用的主要元件及功能介绍。

① 十进制计数器 74LS90

74LS90是二—五—十进制计数器,它有两个时钟输入端CKA和CKB。其中,CKA和Q0

组成一位二进制计数器;CKB和Q3Q2Q1组成五进制计数器;若将Q0与CKB相连接,时钟脉冲从CPA输入,则构成了8421BCD码十进制计数器。74LS90有两个清零端R0(1)、R0(2),两个置9端R9(1)和R9(2),其BCD码十进制计数时序如表1,二—五混合进制计数时序如表2,74LS90的管脚图如图9。

2 3 6 7 14 1 R0(1) R0(2) R9(1) QA R9(2) QB QC CKA QD CKB 74LS90

图9

12 9 8 11

表1 BCD码十进制计数时序 表2 二—五混合进制计数时序

第10页

② 异器74LS92

所谓数器是指内各触发钟信号不于同一外时钟信触发器不翻转。这器的计数一异步计

CK 0 1 2 3 4 5 6 7 8 9 QD QC QB QA CK 0 1 2 3 4 5 6 7 8 9 QA QB QC QD 步计数

0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 异步计计数器器的时是来自接输入号,因而是同时种计数速度慢。数

74LS92是 二—六—十二进制计数器,即CKA和Q0组成二进制计数器,CKB和Q3Q2Q1在74LS92中为六进制计数器。当CKB和Q0相连,时钟脉冲从CKA输入,74LS92构成十六进制计数器。74LS92的管脚图如图10。

6 7 14 1 R0(1) QA R0(2) QB QC CKA QD CKB 74LS92

图10

12 11 9 8

(二) “12翻1”小时计数器电路 (1) 电路如图11 所 示

第11页

3 U9A 74LS00 1 2 11 U10D 74LS00 12 13 3 2 6 7 Q0 Q1 Q2 Q3 5 +5v 4 6 Q Q 74LS74A 1 SD CD 2 D CLK 3 CLK CE 13 U/D RC PL TC 12 R1 3.3K +5V

14 4 5 11 5 4 U9B 74LS00 6 GND 15 1 10 9 CP P0 P1 P2 P3 74LS9 U8D 74LS04 8

图11

“12翻1”小时 计数器是按照“01—02—03—04—05—06—07—08—09—10—11—12—01”规律计数的,计数器的计数状态转换表如表3所示。

表3“12翻1”小时计时时序

CK 0 1 2 3 4 5 6 7

(二)电路的工作原理

由表可知:个位计数器由4位二进制同步可逆计数器 74LS191构成,十位计数器由

第12页

十位 Q10 0 0 0 0 0 0 0 0 个位 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 8 9 10 11 12 13 十位 Q10 0 0 0 1 1 1 0 个位 Q03 Q02 Q01 Q00 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 Q03 Q02 Q01 Q00 CK

双D触发器74LS74构成 ,将它们组成 “12翻1”小时计数器。

由表可知:计数器的状态要发生 两次跳跃:一是:计数器计到9,即个位计数器的状态为Q03Q02Q0Q =1001后,在下一计数脉冲的作用下计数器进入暂态1010,利用暂态100的两个1即Q03Q01使个位异步置0,同时向十位计数器进位使Q10 =1;二是计数到12后,在第13个计数脉冲作用下个位计数器的状态应为Q03Q02Q01Q00 =0001,十位计数器的Q10 =0。第二次跳跃的十位清“0”和个位置“1”的输出端Q10、Q01、Q00来产生。对电路中所用的主要元件及功能介绍。 ① D触发器74LS74

在电路中用到了D触发器74LS74,74LS74的管脚图如图12。

2 3 A PRE 5 D Q 74LS74 CLK CLR Q 1 图12

6 4 下面将介绍一些有关触发器的内容:

触发器,它是由门电路构成的逻辑电路,它的输出具有两个稳定的物理状态(高电平和低电平),所以它能记忆一位二进制代码。触发器是存放在二进制信息的最基本的单元。按其功能可为基本RS触发器触、JK触发器、D触发器和T触发器。

这几种触发器都有集成电路产品。其中应用最广泛的当数JK触发器和D触发器。不过,深刻理解RS触发器对全面掌握触发器的工作方式或动作特点是至关重要的。事实上,JK触发器和D触发器是RS触发器的改进型,其中JK触发器保留了两个数据输入端,而D触发器只保留了一个数据输入端。D触发器有边沿D触发器和高电平D触发器。74LS74为一个电平D触发器。 ② 计数器74LS191

74LS191的管脚图如图13

第13页

4 5 14 11 15 1 10 9 CTEN MAX/MIN D/U CLK LD A B C D

图13

12 13 3 2 6 7 RCO QA 74LS191 QC QD QB 3.2.1.3 校时电路

(一)电路如图14 所示

11 U10D 74LS00 8 U10C 74LS00 9 1HZ 10 74LS04 10 U8E 11 R3 3.3k C1 S1 0.01uF 74LS00 1 2 S2/M2 Q2

12 13 3 U11A +5V

GND

图14

(二)电路的工作原理

校时电路的作用是:当数字钟接通电源或者出现误差时,校正时间。校时是数字钟应具有的基本功能。一般电子表都具有时、分、秒等校时功能。为了使电路简单,在此设计中只进行分和小时的校时。校时有“快校时”和“慢校时”两种,“快校时”是通过开关控制,使计数器对1Hz校时脉冲计数。“慢校时”是用手动产生单脉冲作校时脉冲。图中S1校分用的控制开关,S2(总图)为校时用的控制开关,它们的控制功能如表4所示,校时脉冲采用分频器输出的1Hz脉冲,当S1或S2分别为“0”时可以进行“快校时”。

第14页

如果校时脉冲由单次脉冲产生器提供,则可以进行“慢校时”。 表4校时开关的功能

S1 1 1 0 S2 1 0 0 功能 计数 校分 校时 表4

(三)对电路中所用的主要元件及功能介绍

在此电路中,用到的元器件有两块四2输入与非门74LS00 、一块六反相器74 LS04、两个电容、两个电阻以及两个开关。

(1)四-2输入与非门74LS00

集成逻辑门是数字电路中应用十分广泛最基本的一种器件,为了合理的使用和充分利用其性能,必须对它的主要参数和逻辑功能进行测试。74LS00与非门的主要参数为:

输出高电平:指与非门有一个以上输入端接地或接低电平时的输出电平值。 输出低电平:指与非门的所有输入端均接高电平时的输出电平值。 开门电平:指与非门输出处于额定低电平时允许输入高电平的最小值。 关门电平:指与非门输出处于高电平状态时允许输入低电平的最大值。

电压传输特性:是指门的输出电压随输入电压而变化的曲线,由它可以得到门电路的输出高电平、输出低电平、关门电平和开门电平等。

低电平的输出电源电流;是指输入所有端都悬空,输出端空载时,电源提供器件的电流。

高电平输出电源电流:是指输出端空载,每个门各有一个以上的输入端接地,电源提供给器件的电流。

低电平输入电流:是指被测输入端接地,其余输入端悬空时,由被测输入端流出的电流值。

高电平输入电流:指被测输入端接高电平,其余输入端接地,流入被测输入端的电流值。

扇出系数:门电路能驱动同类门的个数,它是衡量门电路负载能力的一个参数,TTL与非门有两种不同性质的负载,即灌电流负载和拉电流负载,因此有两种扇出系数。即

第15页

低电平扇出系数和高电平扇出系数。

3.2.1.4 译码与显示电路

(一)电路如图15所示

4 5 3 7 1 2 6 BI/RBO a RBI b LT c A d B e C f D g 74LS48 13 12 11 10 9 15 14 1 2 3 4 5 6 7 a DPY a b c f b g d e e c d f g [LEDgn] DPY_7-SEG 图15

(二)电路的工作原理

译码是编码的相反过程,译码器是将输入的二进制代码翻译成相应的输出信号以表示编码时所赋予原意的电路。常用的集成译码器有二进制译码器、二—十制译码器和BCD—7段译码器、显示模块用来显示计时模块输出的结果。 (三)对电路中的主要元件及功能介绍 (1)译码器74LS48

译码器是一个多输入、多输出的组合逻辑电路。它的工作是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数字分配,存储器寻址和组合控制信号等。译码器可以分为通用译码器和显示译码器两大类。在电路中用的译码器是共阴极译码器74LS48,用74LS48把输入的8421BCD码ABCD译成七段输出a-g,再由七段数码管显示相应的数。 74LS48的管脚图如图16。在管脚图中,管脚LT、RBI、BI/RBO都是低电平是起作用,作用分别为:

LT为灯测检查,用LT可检查七段显示器个字段是否能正常被点燃。 BI是灭灯输入,可以使显示灯熄灭。

RBI是灭零输入,可以按照需要将显示的零予以熄灭。BI/RBO是共用输出端,RBO称为

第16页

灭零输出端,可以配合灭零输出端RBI,在多位十进制数表示时,把多余零位熄灭掉,以提高视图的清晰度。也可用共阴译码器74LS248,CD4511。

4 5 3 7 1 2 6 BI/RBO RBI LT A B C D 74LS48 a b c d e f g 13 12 11 10 9 15 14 图16

(2)显示器SM421050N

在此电路图中所用的显示器是共阴极形式,阴极必须接地。SM421050N的管脚功能图如图17

1 2 3 4 5 6 7 DPY a a b c f b g d e e c d f g [LEDgn] DPY_7-SEG

图17

主体电路部分是由上面的以上的各个单元电路组成的。

3.2.2扩展功功能电路的设计 3.2.2.1定时控制电路

数字钟在指定的时刻发出信号,或驱动音响电路“闹时”;或对某装置的电源进行接通或断开“控制”。不管是闹时还是控制,都要求时间准确,即信号的开始时刻与持续时间必须满足规定的要求。 (一)设计电路如图18所示

第17页

+5V+5VRZ322131210974LS20+5V124574LS20UZ1A16274LS031KHZUZ1B485UZ4BRL3.3K6UZ9AUZ9B432374LS00574LS00SW 6SZ3RZ41K3DG130LS1Q174LS03UZ4A1SPEAKER 图18

(二)电路的工作原理

在这里将举例来说明它的工作原理。要求上午7时59分发出闹时信号,持续1分钟。设计如下:

7时59分对应数字钟的时时个位计数器的状态为(Q3Q2Q1Q0)H?1011,1分十位计数器的状态为(Q3Q2Q1Q0个位计数器的状态为(Q3Q2Q1Q0)M1?1001,若将上述计数器)M2?010,分1输出为“1”的所有输出端经过与门电路去控制音响电路,就可以使音响电路正好在7点59分响,持续1分钟后(即8点)停响。所以闹时控制信号Z的表达式为 Q0S1?1Z?(Q2Q1Q0)H1?(Q2Q0)M2?(Q3Q0)M1?M 式中,M为上午的信号输出,要求M=1。

如果用与非门实现的逻辑表达式为:

Z?(Q2Q1Q0)H1?M?(Q2Q0)M2?(Q3Q0)M1

在该电路图中用到了4输入二与非门74LS20,集电极开路的2输入四与非门74LS03,因OC门的输出端可以进行“线与”,使用时在它们的输出端与电源+5V端之间应接一电阻RL。RL的值由下式决定:

RLmax?VCC?VOHminnIOH?mIIH RLmin?VCC?VOLmaxIOL?mIIL

VOLmax=0.4V,IIL=0.4mA,VOLmin=2.4V,IIH=50uA,IOL=8mA,IOH=100Ua;m为负载门输入端总个

数。

取RL=3.3KΩ。如果控制1KHz高音和驱动音响电路的两极与非门也采用OC门,则

第18页

RL的值应该重新计算。

由电路图可以看见,上午7点59分,音响电路的晶体管导通,则扬声器发出1KHz的声音。持续1分钟到8点整晶体管因为输入端为“0”而截止,电路停闹。 (三)对电路中所用的主要元件及功能介绍

在电路中所用到的元件有74LS03,74LS20等。

(1)四2输入与非门74LS03,只要输入变量有一个为0则输出为1,只有输入全为1,输出才为0.

74LS03的管脚图如图19

A

1 2 图19

&3 74LS03

(2)二4输入与非门74LS20,四个输入端有一个为0,则输出为1,只有全部输入为1,输出才为0.

74LS20的管脚图如图20所示。

1 2 4 5 A & 6 74LS20

图20

3.2.2.2 仿广播电台正点报时电路

(一)功能要求

仿广播电台正点报时的功能要求是:每当数字钟计时快要到正点时,通常按照4低音1高音的顺序发出间断声响,以最后一声高音结束的时刻为正点时刻。 (二)该电路的工作原理

电路图的工作原理举例来说明;例如设4声低音(约500Hz)分别 在59分51秒、53秒、55秒及57秒,最后一声高音(约1000Hz)发生在59秒,它们的持续时间为1

第19页

秒。只有当分十进位的Q2M2Q0M2?11,分个位的Q3M1Q0M1?11,秒十位的Q2S2Q0S2?11及秒个位的Q0S1?1时,音响电路才能工作。 (三)对该电路中使用的元件的介绍

因为在该电路中所用的元件主要是74LS00、74LS04及74LS20这些元件在前面的电路中已经介绍.这里就不再介绍它了

3.2.2.3 自动报整点时数电路

(一)电路的工作原理

报整点时数电路的功能是:每当数字钟计时到整点时发出音响,并且几点响几声。 实现这一功能的电路主要有以下几个部分。

减法计数器:完成几点响几声的功能。即从小时计数器的整点开始进行减法计数,直到零为止。

编码器:将小时计数器的5个输出端Q4、Q3、Q2、Q1、Q0按照“12翻1”的编码要求转换为减法计数器的4个输入端D3、D2、D1、D0所需要的BCD码。在电路图中编码器是由与非门实现的组合逻辑电路。

其中编码器是由与非门实现的组合逻辑电路,其输出端的逻辑表达式由5变量的卡若图可得。

D0?Q0 D1?Q4Q1?Q1Q4 D2?Q2?Q4Q1 D3?Q3?Q4

分进位脉冲 小时计数器输出 减法计数器输入 CK Q4 Q3 Q2Q1Q0 D3 D2 D1 D0 1 0 0 0 0 1 0 0 0 1 2 0 0 0 1 0 0 0 1 0 3 0 0 0 1 1 0 0 1 1 4 0 0 1 0 0 0 1 0 0 5 0 0 1 0 1 0 1 0 1 6 0 0 1 1 0 0 1 1 0 7 0 0 1 1 1 0 1 1 1 8 0 1 0 0 0 1 0 0 0 9 0 1 0 0 1 1 0 0 1 10 1 0 0 0 0 1 0 1 0 11 1 0 0 0 1 1 0 1 1 12 1 0 0 1 0 1 1 0 0

第20页

致 谢

毕业设计完成了,在这个过程中我学到了很多东西。首先我要感谢我的指导老师孙丰收、丁兆运老师,他们在我完成论文的过程中,给予了我很大的帮助。在论文开始的初期,我对于论文的结构以及文献选取等方面都有很多问题,整体构思不是很明确,段落层次也不是很清晰,老师详细给我分析论文的写作过程,从论文的题目,论文的内容,论文的脉络,都给我详细的指导。在我论文的进展过程中,老师也及时给我解决疑惑,并且监督我论文的进展过程,非常感谢!但是惭愧的是,我没有及时完成任务,论文也时有偏差出现,经过了曲折的过程,老师也耐心的给我激励,非常感谢!

我想,毕业论文的过程不仅仅是一个完成一篇论文的过程,而是一个端正态度的过程,是总结大学四年的一个过程,是在踏入社会前的历练过程。这个过程将使我受益匪浅!

第26页

参考文献

[1]康华光.电子技术基础.数字部分 北京:高等教育出版社,2000 [2]顾永杰.电工电子技术实训教程.上海:上海交通大学出版社,1999 [3]陈小虎.电工实习(I).北京:中国电力出版社,1996

[4]焦辎厚.电子工艺实习教程.哈尔滨:哈尔滨工业大学出版社,1993 [5]陈 坚.电力电子学[M].北京:高等教育出版社,2002

[6]宋春荣.通用集成电路速查手册.山东科学技术出版社,1995 [7]高吉祥.电子技术基础实验与课程设计.电子工业出版社,2002 [8]吕思忠.数子电路实验与课程设计.哈尔滨工业大学出版社,2001 [9]谢自美.电子线路设计、实验、测试.华中理工大学出版社,2000 [10]王琉银.脉冲与数字电路.高等教育出版,1985

[11][美]M.Morris Mano.Digital Design.北京:高等教育出版社,2002

[12][美] JohnM Yarbrough .DIGITAL LOGIC APPLICATIONS AND DESIGN.北京:机械工业

出版社,2002

第27页

附录

触发器

1.按照电路的结构和工作特点的不同,触发器可分为基本触发器、同步触发器、主从触发器和边沿触发器。本设计主要偏重于边沿触发器,它们各有特点。

1)基本触发器:在这种电路中输入信号是直接加到输入端的,它是触发器的基本触发形式,是构成其它类型触发器的基础。

2)同步触发器:在这种电路中输入信号是通过控制门输入的而管理控制门的信号是时钟脉冲ck信号,只有在脉冲信号到来时,触发器才能接受输入信号,否则对电路不起作用。

3)主从触发器:为了克服同步触发器的缺点,经改进得到主从触发器,在这种触发器中,先把输入信号送入主触发器中,然后送入从触发器并输出,整个过程在时钟脉冲下分布进行,具有主从控制的特点。

4)边沿触发器:为了进一步解决主从触发器的缺点,出现了边沿触发器,这种触发器只有在时钟脉冲信号的上升沿或下降沿,输入信号才能被接受,大大减少了被干扰的机会。

2.按在时钟脉冲下逻辑功能的不同,时钟触发器可分为RS触发器、JK触发器、D触发器、T触发器、T`触发器等。

3.按照电路使用的开关元件的不同,可分为TTL触发器和CMOS触发器。 4.按照电路是否集成,分为分立元件触发器和集成触发器。

显示译码器:

七段显示器,它由a~g七个光段,从0~9十个数码将有其中不同的光段组合而成。半导体七段显示器的每个光段都是一个发光二极管。

发光二极管和普通二极管一样,具有单向导电性,当外加反向电压时,处于截止状态;当外加正向电压而且足够大时,才处于导通状态,而当正向电流足够大时才能发光。

如下图所示:

第28页

发光二极管

发光二极管的驱动电路,其中门电路均为集电极开路门(OC).当门处于导通状态(即输出为低电平)时,发光二极管因正向电压太低而不可能发光;当门处于截止状态时(即输出电平为高电平)时,只要电阻R取值得当,发光二极管就会有足够大的正向电流而发光,可见该电路为高电平驱动

当门电路处于导通状态(即输处为低电平)时,只要电阻R取值得当,发光二极管就会有足够的正向电流,因而发光;当处于截止状态(即输处为高电平)时,发光二极管正向电压过小不足以使其导通,因而不会发光。则该电平为低电平驱动。

集成十进制异步计数器74LS90的功能:

(1)异步清零功能。当R0=R0(2),R0(1)=0时,若R9=R9(1),R9(2)=0时,则计数器清零,并与CK无关。

(2)异步置9功能。当R0=R0(2),R0(1)=1时,计数器置9,即被置成1001的状态,置9功能也于CK无关。

(3)计数功能,当R0=0,R9=0时计数器计数。根据不同接法,还可实现二进制、五进制。

第29页

百度搜索“yundocx”或“云文档网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,云文档网,提供经典综合文库数字钟时钟电路图设计在线全文阅读。

数字钟时钟电路图设计.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.yundocx.com/wenku/200761.html(转载请注明文章来源)
Copyright © 2018-2022 云文档网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备19068818号-2
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219